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Generalized two-dimensional correlation spectroscopy (2D-COS) establishes correlations between intensity
variations within a series of ordered spectra generated by an external perturbation. The influence of the reference
spectrum on the synchronicity has been investigated by using spectral simulations and mathematical analysis.
With a two-state model, it is found that for two synchronous bands, 2D asynchronous peaks appear when no
reference is used, whereas when the mean or the first spectrum of the series is chosen, no asynchronous peak
occurs, as expected. In the latter cases, the intensity ratio of the dynamic spectra is constant throughout the
experiment, which is not the case if a reference is not subtracted. The proportionality constant is equal to the
ratio of the amplitudes of the intensity variations. This result is mathematically demonstrated and generalized
to any form of intensity variation: if the intensity ratio of two bands is constant throughout the experiment,
the elements of the 2D asynchronous matrix are zero at any wavenumber. In addition, it is established that
any spectrum of the series can be used as a reference to evidence the occurrence of synchronisms. In the case
of linear intensity variations, the correlations between two bands are always synchronous as long as a spectrum
of the series or the mean spectrum is chosen as the reference. Thus, it is very difficult to determine whether
the intensity variations have different variation rates. All the conclusions drawn from the mathematical analysis
are confirmed with spectral simulations. These mathematical considerations are applied to absorbance spectra.

Introduction

Generalized two-dimensional correlation spectroscopy (2D-
COS) establishes correlations (in-phase and out-of-phase)
between intensity variations occurring at independent frequen-
cies.1 This method of statistical analysis can be used for any
series of ordered spectra that represents the response of a system
to an applied external perturbation. This perturbation can be of
any nature and can follow any type of variation.1 2D-COS
reveals spectral intensity variations that can be synchronous or
asynchronous. This allows the establishment of band assign-
ments and sequences of events for samples subject to an external
stress. This is an interesting advantage that lead to numerous
studies in order to understand different physical processes such
as dynamic polymer stretching,2,3 phase transitions,4-6 time-
dependent hydrogen-deuterium exchange in proteins,7,8 or heat-
induced denaturation of proteins.9

In 2D-COS, the correlation intensities are given by two
matrixes that correspond to the covariance and the out-of-phase
correlation of the spectral intensity variations. The calculation
is in fact made with the so-called dynamic spectra that are
obtained by the subtraction of a reference spectrum to all original
spectra. This reference can be the first spectrum of the series,
the mean spectrum of the series, or zero (no reference).1,10Little
attention has been paid so far to the importance of the choice
of the reference. Schlutz et al.9 have found that with a reference
spectrum, smaller out-of-phase variations can be detected than
if no reference is used. Sˇašić and colleagues11 have shown that
the results of 2D-COS strongly depend on the pretreatment

(mean-centering and normalization) made on the spectra. This
in turn is related to the reference problem. Sˇašić and colleagues
have found that the normalization led to the disappearance of
the asynchronous spectra in a two-component system. It was
concluded that the normalization is important for systems with
large intensity variations. Finally, Czarnecki12 observed that a
band with no intensity change can generate 2D peaks if no
reference is used, whereas these peaks disappear with a
reference.

In this study, simulations have been used to investigate the
influence of different references on the spectral correlations and
on the synchronism. A simple two-state model is first presented.
It is shown that the choice of the reference is crucial to detect
in-phase intensity correlations, whereas normalization is unim-
portant. The simulated results are mathematically rationalized
and generalized to different types of intensity variations. The
notion of synchronicity and the criterion for a reference to be
valid are described mathematically. Special attention is paid to
linear intensity variations and to absorption spectra.

Experimental Section

Simulations.Spectra were simulated by using two Lorentzian
bands located at 950 and 1050 cm-1 that decrease in intensity
without wavenumber shift or bandwidth change. Except for the
two-state model presented below, one of the two bands arbitrary
decreases from 10 to 7 arbitrary units, whereas the other one
decreases from 2 to 1. The rates and delays of the intensity
variations were controlled, and different types of variations were
used (see below). The spacing between the data points was 1
cm-1. For each simulation, the series was composed of 13
spectra.
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Two-Dimensional Correlation Analysis.The synchronous
(Φ) and asynchronous (Ψ) matrixes were calculated and the
corresponding maps plotted with a homemade program written
with the Mathlab 5.3 software for Windows (MathSoft Inc.,
Cambridge, MA). The calculation was carried out in the matrix
form11 using the Hilbert transform:10

whereN is the number of spectra of the series,M is the matrix
of the spectra of the series (spectra are put in columns),MT its
transposed matrix, andH is the Hilbert-Noda matrix whose
elementsHmn ) 0 if m ) n andHmn ) 1/(n - m) otherwise.

A filter was used to eliminate very small correlation intensi-
ties. It sets to zero the elementsΦmn of Φ and the elements
Ψmn of Ψ that obey the conditions

and

respectively.

Results and Discussion

I. Impact of the Reference.To demonstrate the impact of
the reference spectrum on 2D-COS, a simple two-state model
is first presented. Consider two bands, centered at wavenumbers
νj1 andνj2, that are associated to two species A and B such that

This equilibium depends on a variablet that represents an
external perturbation that is applied to the system under study.
The two bands atνj1 andνj2 evolve as a result of this perturbation
and are represented by their intensitiesy1(t) and y2(t). The
potential presence of band shifts and changes in bandwidth is
neglected here. Before the perturbation is applied, the initial
intensitiesy1

i and y2
i are constant and have different values.

For example, for infrared absorption spectra,y1
i and y2

i may
have different values because the absorption coefficients of the
vibrations atνj1 and νj2 are different and because the initial
concentrations of the two species are different. When the
perturbation is applied, the intensities change as a function of
t, with t ∈[-T/2,T/2], whereT is the total time of the experiment.
The intensities are described by two functionsg1(t) and g2(t)
that represent the time-dependent response of the system atνj1

and νj2 and by the amplitudes of the intensity variationsδy1

andδy2. The intensities can then be written as

Figure 1 shows the simulated spectra of two bands repre-
sentative of a two-state model. In this example, the species A
is characterized by a band located at 950 cm-1 and the species
B by a band at 1050 cm-1. The concentration of A is initially
100% of the total and that of B is zero. During the simulated
experiment, 75% of A is converted into B. To describe the
intensity variations, a hyperbolic tangent function has been
chosen as illustrated in Figure 2. This function is a good

representation of phenomena such as phase transitions or titration
curves, etc., and its expression is given by

where the constantR is the slope of the curve at the origin.
Hence, it characterizes the speed (or the rate) of the intensity
variations. The intensity variations atνj1 andνj2 are characterized
by their speedR1 andR2, respectively. Due to the conversion
of the species A into B for a two-state model (or reciprocally
B into A), the variations must be synchronous. Therefore, the
type of variation must be identical atνj1 andνj2 (g1(t) ≡ g2(t) ≡
g(t)), and the variation rates must be equal (R1 ) R2 ) R). The
amplitudesδy1 andδy2 can be a priori different. For example,
for infrared absorption spectra,δy1 * δy2 because each
absorption coefficient atνj1 andνj2 is specific to the correspond-
ing vibration mode. Hence,y1(t) andy2(t) can be written

The functiong(t) ) (1 + th(Rt))/2 has been more specifically
chosen because it varies between 0 and 1, whereas the function
th(Rt) varies between-1 and+1, as seen in Figure 2. Thus,
y1

i - δy1 e y1(t) e y1
i andy2

i e y2(t) e y2
i + δy2. The opposite

sign in the expressions ofy1(t) andy2(t) in eq 4 stems from the
fact that one band decreases while the other increases for a two-
state model. A potential delay, notedâ, can be introduced by
using a translation of the intensity variation along thet axis
(replacingt by t - â). Of course, for a two state model, the
values ofâ must be equal fory1(t) and y2(t). Therefore, by
definition, two synchronous (in-phase) bands must follow the
same type of variation (the same function), have the same speed

Figure 1. Simulated absorbance spectra corresponding to a two-state
model. One band is located atυj1 ) 950 cm-1 and decreases in intensity
as a function of the external variablet. The second band, located at
υj2 ) 1050 cm-1, increases in intensity. The two bands are synchronous
with yi

1 ) 0.1, yi
2 ) 0, δy1) 0.075, andδy2 ) δy1/1.5 ) 0.05.

Figure 2. Plot of the function th(Rt) (eq 3) and the function
(1+ th(Rt))/2 in eq 4 fort ∈ [-6,+6] (step of unity) andR ) 0.5.

Φ ) 1
N - 1

MM T and Ψ ) 1
N - 1

M (HM T)

|Φmn| < (Φmax - Φmin)/100

|Ψmn| < (Ψmax - Ψmin)/100

A H B (1)

{y1(t) ) y1
i + δy1g1(t)

y2(t) ) y2
i + δy2g2(t)

(2)

th(Rt) )
exp(Rt) - exp(-Rt)

exp(Rt) + exp(-Rt)
(3)

{y1(t) ) y1
i - δy1g(t) ) y1

i - δy1

1 + th(Rt)
2

y2(t) ) y2
i + δy2g(t) ) y2

i + δy2

1 + th(Rt)
2

(4)
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(the same value ofR), and be characterized by the same delay
(the same value ofâ). In Figure 1, R is 0.5, â is 0, and
t ∈ [-6,+6] in arbitrary time units.

Figure 3 presents the asynchronous maps generated by the
spectra of Figure 1 and calculated with different references (i.e.,
with different dynamic spectra). The usual references suggested
by Noda1 are used, i.e., the first spectrum, the mean (average)
spectrum, and no reference. Without reference, the asynchronous
map exhibits a peak at 950/1050 cm-1, indicating that the band
at 950 cm-1 is delayed or varies at a different rate than that at
1050 cm-1,12 although the spectral variations are synchronous
as defined above. When the mean spectrum or the first spectrum
is used as a reference, the maps only exhibit noise, which is
characteristic of two bands that are in-phase. Thus, different
results are obtained depending on the reference.

Figure 4, in its upper part, presents the dynamic intensities
ỹ1(t) andỹ2(t) of the two bands shown in Figure 1 as a function
of t, obtained after subtraction of different references. Without
reference,ỹ1(t) ) y1(t) andỹ2(t) ) y2(t). The use of a reference
only results in an offset of the intensity variations, the two
dynamic intensities atνj1 and νj2 being zero at the same time.

This time, notedtref in the following, corresponds to the time
of the chosen reference and is defined by

Then, y1
ref ) y1(tref) and y2

ref ) y2(tref) are the reference
intensities of the reference spectrum corresponding to the time
tref. In the time domain [-6,+6] of this two-state model,tref is
-6 if the first spectrum is the reference (Figure 4b) and 0 if
the mean spectrum is chosen (Figure 4c). In its lower part,
Figure 4 shows the plots ofỹ1(t) as a function ofỹ2(t). It can be
seen that, as a result of the offset, the relation betweenỹ1(t)
andỹ2(t) is a straight line that is linear (that passes through the
origin of the axis), i.e.,

wherec is a constant with respect tot. Therefore, the dynamic
intensities atυj1 andυj2 increase in a proportional manner; i.e.,
the intensity ratio of the two synchronous bands is constant
throughout the experiment if a reference is used. The cor-

Figure 3. Asynchronous mapsΨ generated by the spectra of Figure 1. The maps were obtained for different references: (a) no reference; (b) first
spectrum; (c) mean spectrum. The simulated dynamic spectra are shown in the outer frames. The minimum and maximum values of the correlation
intensities are indicated at the bottom of the maps.

Figure 4. Intensitiesỹ1(t) andỹ2(t) as a function of the external variablet (above) and intensityỹ1(t) as a function ofỹ2(t) (below), corresponding
to the simulated spectra of Figure 1 and calculated for different references: (a) no reference; (b) first spectrum; (c) mean spectrum.

ỹ1(tref) ) ỹ2(tref) ) 0 (5)

ỹ1(t) ) cỹ2(t) (6)
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respondence between synchronicity and the linear relationship
between the intensity variations has been emphasized very
recently.13 Without a reference, the straight line is affine (does
not passes through the origin), i.e.,

and the intensity ratio is not constant with respect tot.
These conclusions can be easily demonstrated mathematically.

If the first spectrum is the reference, the dynamic intensities
are

Therefore, the intensity ratior of the dynamic intensities as a
function of t is

which is identical to eq 6. Then, the intensity ratior of the two
bands is constant for anyt and is given by the ratio of the
amplitudes of the intensity variations. The negative sign only
reflects that the two bands change in opposite directions.

For t ∈ [-T/2,+T/2], the mean value of th(Rt) is zero because
this function is odd. Then, the mean (average) intensitiesyj1 and
yj2 are

If the reference is the mean spectrum, the dynamic intensities
are given by

and their ratios also follow eq 9. One can notice that the dynamic
intensities plotted in parts b and c of Figure 4 as a function of
t are well represented by eqs 8 and 11, respectively. In the
example shown in Figure 1,δy1 ) 0.075 andδy2 ) 0.05, so
that r should be equal to-1.5, which is actually observed in
Figure 4b,c.

If no reference is used, the intensity ratio is

and it can be demonstrated that the relation betweenỹ1(t) and
ỹ2(t) follows eq 7. Then,r is not constant with respect tot even
if R1 ) R2. Therefore, the constancy ofr (i.e., the linearity
betweenỹ1(t) and ỹ2(t)) is a criterion for two bands to be
synchronous. Using a nonzero reference, the synchronicity
between two bands is revealed even if the magnitude of their
intensity changes is different of if their initial intensities are
different. The choice of the reference is thus very important to
detect synchronicities in 2D-COS. However, the normalization
of the intensity is unimportant to demonstrate the occurrence

of synchronicities, even though the correlation intensities of the
2D maps do depend on the amplitudes of the intensity variations
of the dynamic spectra.

The above mathematical results have been obtained consider-
ing two intensities located at fixed wavenumbers. Of course,
the results can be extended to two wavenumber domains that
represent the (more realistic) absorption of two vibration modes
(see Figure 3). As long as the bands do not experience
wavenumber shift of change in bandwidth, the 2D correlations
between intensities at any wavenumber of the first band and
intensities at any wavenumber of the second band will follow
the same rules given above.

II. General Case: Criterion for Two Intensity Variations
To Be Synchronous (In-phase).Equations 6 and 7 have been
deduced from synchronous intensity variations that follow a
hyperbolic tangent function, but are these equations valid for
any synchronous variations? Consider two dynamic intensities
at υj1 andυj2 whose intensity ratio is constant for anyt such as

where c is a constant andy1
ref and y2

ref are the reference
intensities atυj1 and υj2 of the reference spectrum. From the
Fourier transform formalism of 2D-COS, the elementsΦ(υj1,υj2)
andΨ(υj1,υj2) of the synchronous mapΦ and asynchronous map
Ψ can be written as follows:1

whereỸj
Re(ω) andỸj

Im(ω) (j ) 1 or 2) are the real and imaginary
parts of the Fourier transformỸj(ω) of yj(t), respectively. If
ỹ1(t) ) cỹ2(t), the Fourier transforms are related by

Therefore, for two complex numbers that are proportional, we
have

From eqs 14, 15, and 17, we obtain

It is demonstrated that when the ratio of two intensities is
constant for anyt (i.e., if eq 13 is satisfied), the asynchronous
correlation is zero and the two intensity variations are synchro-
nous. A similar demonstration can be done using the Hilbert-
Noda formalism.

III. General Case: General Functions That Satisfy the
Criterion of Synchronicity. The above two-state model, for
which a hyperbolic function th(Rt) represents the intensity
variations, is a particular case that illustrates the synchronism

ỹ1(t) ) cỹ2(t) + d, with d * 0 (7)

{ỹ1(t) ) y1(t) - y1
i ) - δy1

1 + th(Rt)
2

ỹ2(t) ) y2(t) - y2
i ) δy2

1 + th(Rt)
2

(8)

r )
ỹ1(R1,t)

ỹ2(R2,t)
) -

δy1

δy2
(9)

{yj1 ) 1
T∫-T/2

T/2
y1(t) dt ) y1

i -
δy1

2

yj2 ) 1
T∫-T/2

T/2
y2(t) dt ) y2

i +
δy2

2

(10)

{ỹ1(t) ) y1(t) - yj1 ) -
δy1

2
th(Rt)

ỹ2(t) ) y2(t) - yj2 )
δy2

2
th(Rt)

(11)

r )
ỹ1(t)

ỹ2(t)
)

y1(t)

y2(t)
)

y1
i - δy1[1 + th(Rt)]/2

y2
i + δy2[1 + th(Rt)]/2

(12)

r )
ỹ1(t)

ỹ2(t)
)

y1(t) - y1
ref

y2(t) - y2
ref

) c (13)

Φ(υj1, υj2) ) 1
πT∫0

∞
[Ỹ1

Re(ω)Ỹ2
Re(ω) + Ỹ1

Im(ω)Ỹ2
Im(ω)] dω

(14)

Ψ(υj1,υj2) ) 1
T∫0

[Ỹ1
Im(ω)Ỹ2

Re(ω) - Ỹ1
Re(ω)Ỹ2

Im(ω)] dω
(15)

Ỹ1(ω) ) cỸ2(ω) (16)

{Ỹ1
Re(ω) ) cỸ2

Re(ω)

Ỹ1
Im(ω) ) cỸ2

Im(ω)
(17)

Φ(υj1,υj2) ) c
πT∫0

∞|Ỹ2(ω)|2 dω (18)

Ψ(υj1,υj2) )
c

πT∫0

∞
[Ỹ2

Im(ω)Ỹ2
Re(ω) - Ỹ2

Re(ω)Ỹ2
Im(ω)] dω ) 0 (19)
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between two bands. One can wonder what the forms of the
dynamic intensities are that satisfy the condition given in
eq 13. Consider the intensityyj(t) (for j ) 1 or 2) at the
wavenumberυj j such that

for t ∈ [0,T] (but identical results can be obtained for t ranging
between two arbitrary valuesT1 and T2). Aj and Bj are two
constants with respect tot that depend on the studied system
and onυj j. The functiong(Rj,t) is arbitrary and is characterized
by a single parameterRj which is related to the speed (the rate)
of the intensity variation and which is a constant with respect
to t. The values ofR1 andR2 can be a priori different. A potential
delay can be added toy1(t) or y2(t) by replacingt by t - âj,
whereâj is constant and characterizes the band atυj j. In the
following, â1 andâ2 are set to zero. Examples ofg(R,t) functions
are th(Rt), exp(-Rt), ln(Rt), sin(Rt), polynomials, etc. Some
boundary conditions can be imposed onyi(t) and we noteδyj

the amplitude of the intensity variations such as

Given a and b are the boundary values ofg(Rj,t) and δg the
difference betweenb anda

the boundary conditions (21) become

This leads to another form for eq 20:

A representative scheme of the general functiong(R,t) and
the intensitiesyj(t) of two bands located at different wavenum-
bers are given in Figure 5. For two bands that have different
variation amplitudes and different initial and final intensities,
g(R,t) represents a common function that describes their
(synchronous) intensity variation. It can also be viewed as the
representation of the external perturbation. Indeed, for small
amplitudes of the perturbation, the response of the system will
be, in a first approximation, of the same type as the perturbation,
i.e., will follow the same function. Thus, the intensity variations
of the bands will be of the same type, with potential delaysâj

with respect to the perturbation. Each parameter that describes
the bands depends on the applied perturbation, on the system
under study, and on the wavenumber. Therefore,yij, yfj, and
δyj depend on the perturbation and on the intrinsic properties
of the system. This is reflected by eq 23 where a and b
characterize the perturbation, whereasAj(υj j) andBj(υj j) charac-
terize the system at the wavenumberυj j.

If no reference is used, the intensity ratio of the dynamic
intensities represented by eq 24 is not constant with respect to
t even if R1 ) R2 andâ1 ) â2. This is also true even ify1

i )
y2

i, if y2
f ) y1

f, or if δy1 ) δy2. It can be demonstrated that the
relation betweeny1(t) andy2(t) can be rearranged in the form
given by eq 7. Consequently, the two intensity variations will
generate 2D asynchronous peaks even if the bands are actually
synchronous.

If the first spectrum is chosen as the reference, the dynamic
intensities are given by

Then, the ratio of the dynamic intensities is given by

which satisfies eq 13.
The mean intensities are given by

If the mean spectrum is chosen as a reference, the dynamic
intensities are given by

Again, it can be seen that the expressions between the brackets
are equal to each other for the intensities atυj1 andυj2 if R1 )
R2 and if there is no delay between the variations. The ratior
is again equal to the ratio of the amplitudes. Thus, using a
nonzero reference leads to the expected absence of asynchro-
nisms inΨ for synchronous bands. But, is it the case for any
nonzero reference?

Given yj
γ the intensity at wavenumberυj j of a spectrum

situated between the first and the last spectrum of the series
such that

yj(t) ) Ajg(Rj,t) + Bj (20)

{yj(0) ) yj
i

yj(T) ) yj
f

δyj ) yj
f - yj

i

(21)

{g(Rj, t ) 0) ) a
g(Rj, t ) T) ) b
δg ) b - a

(22)

{yj(0) ) yj
i ) Aja + Bj

yj(T) ) yj
f ) Ajb + Bj

δyj ) yj
f - yj

i ) Aj(b - a)

(23)

yj(t) ) 1
δg

[δyjg(Rj,t) - (ayj
f - byj

i)]

)
δyj

δg
[g(Rj,t) - a] + yj

i (24)

Figure 5. Symbolic representation of (a) the general functiong(R,t)
that can describe intensity variations and (b) two synchronous intensity
variations y1(t) and y2(t) that follow this general function. The
amplitudes and the initial and final values of the intensities are also
represented.

ỹj(t) ) yj(t) - yi
j )

δyj

δg
[g(Rj,t) - a] (25)

r )
ỹ1(t)

ỹ2(t)
)

δy1

δg
[g(R1,t) - a]

δy2

δg
[g(R2,t) - a]

)
δy1

δy2
if R1 ) R2 (26)

yjj ) 1
T∫0

T
yj(t) dt ) 1

δg[δyj

T
(∫0

T
g(Rj,t) dt) - (ayf

j - byi
j)]

)
δyj

δg[1T∫0

T
g(Rj,t) dt - a] + yi

j (27)

ỹj(t) ) yj(t) - yjj )
yj

g[g(Rj,t) - 1
T∫0

T
g(Rj,t) dt] (28)

yj
γ ) yj(t ) γT), with 0 e γ e 1 (29)
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If this spectrum is used as a reference, it is found that

It can be seen that eq 25 is a particular case of eq 30 when
γ ) 0 (initial spectrum). From eq 30,r satisfies eq 13 ifR1 )
R2 and is equal to the ratio of the variation amplitudes.
Therefore, as soon as any spectrum of the series is used as a
reference, two synchronous bands will not generate asynchro-
nous peaks. It can be noticed that the two dynamic intensities
ỹ1(t) andỹ2(t) both follow eq 5 fortref ) γT (which corresponds
to the time of the chosen referenceyj

γ).
The fact that the choice of the reference may be arbitrary

has been previously mentioned.1 It is demonstrated here that it
should not be zero and that it may be any spectrum of the series
or the mean spectrum. With such references, the results of 2D-
COS will be qualitatively equivalent (2D asynchronous peaks
located at the same positions with the same signs), but the 2D
correlation intensity values may be different depending on the
chosen reference. Without reference, the correlations will be
asynchronous, although the two bands can be actually synchro-
nous. It has to be noted that correct results will be obtained if
any spectrum of the series or if the mean spectrum is the
reference but, of course, the reference cannot be completely
arbitrary. First of all, the reference should have a physical
meaning. Second, the convenient references (i.e., those that will
provide correct results for synchronous bands) must be restricted
to those that obey eq 13.

The functiong(R,t) can be monotonic or nonmonotonic. As
long as the two variations follow the same functiong(R,t), they
will be in-phase if a spectrum is used as a reference, ifR1 )
R2, and ifâ1 ) â2. This has been confirmed, for example, with
simulations for which the intensity variations follow a sinusoidal
or a polynomial function of degree 3 such asRt3 - t (data not
shown). But, as pointed out by Sˇašić and colleagues, the
interpretation of synchronous maps generated by nonmonotonic
intensity variations may be complex.11 However, most of the
conclusions drawn from the synchronous map can be directly
obtained from a conventional analysis of the dynamic spectra.
Such an analysis is highly recommended before any 2D-COS
investigation, especially for nonmonotonic variations.

The above mathematical considerations can be extended to
noncontinuous functions (discrete series of spectra), which is
the practical case. The conclusion is the same; i.e., for two
bands, the intensity variations will be experimentally synchro-
nous using 2D-COS if the intensity ratio is constant throughout
the experiment and if a nonzero reference is used. It has to be
stressed that the conclusions relative to the choice of the
reference and to the type of intensity variation that have been
drawn from this mathematical analysis have all been confirmed
by spectral simulations as described in the Experimental Section.

It has to be noted that the problem of the reference also occurs
for asynchronous bands (results not presented). It can be shown
that the sign of the cross-peaks in the synchronous and
asynchronous maps can be incorrect if no reference is used. In
fact, it appears that the sign of the 2D peaks depends on the
direction of the band intensity variations. This clearly can lead
to misinterpretation of the data. The problem does not arise with
a reference, which emphasizes the importance of the reference.

As mentioned in the Introduction, additional 2D peak may
be observed by using a nonzero reference spectrum. This stems
from the fact that the correlation intensities in 2D-COS depends
on both the degree of correlation and the band intensity.
Therefore, 2D peaks due to weak bands can be masked by

stronger ones if no reference is used. Using a reference spectrum,
the initial subtraction diminishes the band intensities, highlight-
ing the small intensity variations.

IV. Special Case: Linear Variations. The relationships
between intensity variations of two synchronous bands repre-
sented by arbitrary functions have been seen above. A special
case that should deserve consideration is linear intensity
variation. Suppose that the intensity variations are linear and
satisfy eq 21. The intensity can be written as

The coefficientδyj/T is the slope of the straight line. It also
represents the speedRj of the intensity variations with

As a consequence, the speed and the amplitude of the intensity
variations are directly related, which is not the case in general.

When the first spectrum is chosen as the reference, the
dynamic intensities are given by (the same demonstrations can
be made and the same conclusions are reached for other
references)

and then

Thus, the above general rule is also valid for linear variations;
i.e., for two synchronous bands, the ratio of their dynamic
intensity is constant and equal to the ratio of the variation
amplitudes when a convenient nonzero reference is used. But
in this case, the variation ratesR1 and R2 do not have to be
identical, because the amplitude and the rate are not independent.
A difference in variation amplitude is the same as a difference
in variation rate. The ratior is then also equal to the intensity
ratio of the rate of changes. Therefore, for two bands that linearly
vary in intensity, their correlations will always be found as
synchronous as long as a convenient spectrum reference is used.
This has been verified with spectral simulations (data not
shown).

V. Application to Absorption Spectra. The above math-
ematical considerations can be applied to spectroscopic signals
represented by their intensityyj(t). As a particular case, we now
consider absorption spectra that follow the Beer-Lambert’s law.
Suppose that under static conditions (t e 0) the absorbanceAj(t)
at wavenumbersυj j is given by

where the constantsεj
o andcj

o are the initial molar absorptivity
and initial concentration, respectively (we assume that the optical
path length of the sample is constant and equal to unity during
the experiment).

For t > 0, the absorbanceAj(t) can be written

ỹj(t) ) yj(t) - yj
γ )

δyj

δg
[g(Rj,t) - g(Rj,t ) γT)] (30)

yj(t) )
δyj

T
t + yj

i (31)

Rj )
δyj

T
(32)

ỹj(t) ) yj(t) - yi
j )

δyj

T
(33)

r )
ỹ1(t)

ỹ2(t)
)

δy1

δy2
)

R1

R2
(34)

Aj(t e 0) ) Ai
j ) εj

ocj
o (35)

Aj(t) ) εj
ocj

o + ε̃j(t)c̃j(t) (36)
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The functionsε̃j(t) and c̃j(t) are the time-dependent responses
at wavenumbersυj j of the molar absorption coefficient and
concentration, respectively. They represent the dynamic part of
the spectra.

Two cases can be encountered:
1. The changes in absorbance are associated toVariations

in concentration of the species (ε̃j(t) ) εj
o).

This corresponds, for example, to a dilution or to any two-
state systems including isomerization, phase transitions, etc. In
this case,

whereδcj is the amplitude of the concentration changes of the
species that absorb atυj j.

With respect to eq 24, eq 37 corresponds toa ) 0 andb )
1. Thus,Aj(t) is exactly represented by the intensityyj(t) that
has been discussed above andAj(t) can be treated similarly. The
above conclusions drawn foryj(t) can be applied toAj(t).
Therefore, for two bands that vary as a consequence of
concentration changes only, the existence of in-phase variations
will be detected by a nonzero reference spectrum. For a two-
state model such as that described above,δc2 ) -δc1 ) δc
andR1 ) R2 ) R. Thus eq 37 becomes forj ) 1 and j ) 2:

It can be seen that the amplitudes of the intensity variations
δy1 ) ε1

oδc andδy2 ) ε2
oδc are different as a result of different

values of the absorption coefficients. Thus, a nonzero reference
has to be used to reveal the synchronism of the two bands.

2. The changes in absorbance are associated to changes in
the molar absorptiVity (c̃j(t) ) cj

o).
This can arise if the absorption coefficient directly depends

on the perturbation (temperature, for example) or as a result of
a change in the molecule orientation (due to an electric field, a
magnetic field, a stretching, etc.). Then, the absorbance takes
the form

whereδεj is the amplitude of the molar absorptivity changes of
the species absorbing atυj j. The absorbance variations of two
synchronous bands can be again well described by the above
analysis.

A more complicated case arises for linear variations of the
absorbance. As seen above, for linear variations, a difference
in amplitude between intensity variations at two different
wavenumbers is related to a difference in the rate of the
variations (eq 32). But one can wonder after all how to
determine the linear absorbance variations that are synchronous
(with different variation amplitudes) and those that are asyn-
chronous (with similar variation amplitudes) using 2D-COS. In
fact, this is impossible because a difference in amplitude is
directly associated to a difference in rate of the variations (eq
32). If a linear external perturbation is applied, it can be
anticipated that the response will (often) also be linear. Since
the two bands initially have different absorbances, the observed
amplitude of the spectral variations will (in general) also be
different. The amplitude of the absorbance changes will then
be different, but it cannot be ascribed to a different amplitude
or to a different rate of the variations. In the case where a change
in concentration is at the origin of the spectral variations (case

1 above), the slopes of the straight lines are different and the
spectral changes cannot be ascribed to a different amplitude of
concentration changes or to a different rate of the variations.
One needs additional data, i.e., the final concentrations of the
two species. If the initial and final concentrations are equal,
and if an asynchronous peak is observed, it can be assessed
that the two bands are asynchronous. However, even if the
magnitudes of the concentration changes of the two species are
nonequal, it cannot be excluded that the rate of the concentration
changes are also different. The same argument can be used if
the spectral changes are due to variations of the absorption
coefficient (case 2 above).

Conclusion
In conclusion, the results shown above demonstrate that it is

highly recommended to use a nonzero reference for 2D-COS
analysis. Otherwise, peak artifacts in the asynchronous maps
can be obtained for synchronous intensity variations. The
reference can be any spectrum of the series or the mean
spectrum. It could also be demonstrated (data not shown) that,
without a reference, error in the signs of the synchronous as
well as asynchronous peaks can arise for nonsynchronous bands,
whereas the signs are correct if the reference is one of the above
spectra. Therefore, not only is the reference spectrum crucial
for synchronous bands as shown in the present analysis, but it
is so for any band variation. Moreover, even using a nonzero
reference, the application of a linear perturbation in view of
2D-COS analysis should be avoided at least for small ampli-
tudes, because the response of the system may also be linear.
As a consequence, the determination of synchronisms and
asynchronisms may be very complex. Even for large-amplitude
variations of the perturbation, one should verify that the
responses of the bands are not linear as a function of the external
variable. The conclusions reached in this study for generalized
2D-COS are valid for the different forms of hybrid 2D-COS14

and for the global phase angle description of 2D-COS15 as well.
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