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Generalized two-dimensional correlation spectroscopy (2D-COS) establishes correlations between intensity
variations within a series of ordered spectra generated by an external perturbation. The influence of the reference
spectrum on the synchronicity has been investigated by using spectral simulations and mathematical analysis.
With a two-state model, it is found that for two synchronous bands, 2D asynchronous peaks appear when no
reference is used, whereas when the mean or the first spectrum of the series is chosen, no asynchronous peak
occurs, as expected. In the latter cases, the intensity ratio of the dynamic spectra is constant throughout the
experiment, which is not the case if a reference is not subtracted. The proportionality constant is equal to the
ratio of the amplitudes of the intensity variations. This result is mathematically demonstrated and generalized

to any form of intensity variation: if the intensity ratio of two bands is constant throughout the experiment,

the elements of the 2D asynchronous matrix are zero at any wavenumber. In addition, it is established that
any spectrum of the series can be used as a reference to evidence the occurrence of synchronisms. In the case
of linear intensity variations, the correlations between two bands are always synchronous as long as a spectrum
of the series or the mean spectrum is chosen as the reference. Thus, it is very difficult to determine whether
the intensity variations have different variation rates. All the conclusions drawn from the mathematical analysis
are confirmed with spectral simulations. These mathematical considerations are applied to absorbance spectra.

Introduction (mean-centering and normalization) made on the spectra. This
) ) ] ) in turn is related to the reference problemass and colleagues
Generalized two-dimensional correlation spectroscopy (2D- haye found that the normalization led to the disappearance of

COS) establishes correlations (in-phase and out-of-phase)ne asynchronous spectra in a two-component system. It was
between intensity variations occurring at independent frequen- ¢oncjuded that the normalization is important for systems with

cies! This method of statistical analysis can be used for any |4rge intensity variations. Finally, Czarnetkbbserved that a
series of ordered spectra that represents the response of a systegyng with no intensity change can generate 2D peaks if no
to an applied external perturbation. This perturbation can be of \oference is used, whereas these peaks disappear with a
any nature and can follow any type of variatibr2D-COS reference.

reveals spectral intensity variations that can be synchronous or | s study, simulations have been used to investigate the

asynchronous. This allows the establishment Qf band assl9Ninfl ence of different references on the spectral correlations and
ments and_ sequences of events for samples subject to an extern%ln the synchronism. A simple two-state model is first presented.
stress. '_I'h|s IS an interesting ao_lvantage tha_t lead to NUMErOUS is shown that the choice of the reference is crucial to detect
studies in order to understand different physical processes Sucr]n-phase intensity correlations, whereas normalization is unim-

Ss dyr:jamtlil deIW:I; sttretphlﬁ@, prr:ase tr ansn;o.r%@; tlhmet portant. The simulated results are mathematically rationalized
. %pen deg ytrogt_ euferlurtn_(axc ange In proteinsor heat- and generalized to different types of intensity variations. The
induced denaturation ot proteins. notion of synchronicity and the criterion for a reference to be

In 2D-COS, the correlation intensities are given by two yajid are described mathematically. Special attention is paid to
matrixes that Correspond to the covariance and the Out'of'phaSQ|near |ntens|ty variations and to absorp“on Spectra

correlation of the spectral intensity variations. The calculation

is in_ fact made with the so-called dynamic spectra tha@ are gyperimental Section

obtained by the subtraction of a reference spectrum to all original

spectra. This reference can be the first spectrum of the series, Simulations. Spectra were simulated by using two Lorentzian

the mean spectrum of the series, or zero (no referér€ejttle bands located at 950 and 1050 ¢hthat decrease in intensity

attention has been paid so far to the importance of the choicewithout wavenumber shift or bandwidth change. Except for the

of the reference. Schlutz et@have found that with a reference  two-state model presented below, one of the two bands arbitrary

spectrum, smaller out:of-phase variations can be detected thardecreases from 10 to 7 arbitrary units, whereas the other one

if no reference is used.a8¢ and colleagué$ have shown that ~ decreases from 2 to 1. The rates and delays of the intensity

the results of 2D-COS strongly depend on the pretreatment variations were controlled, and different types of variations were

used (see below). The spacing between the data points was 1

* Corresponding author. Telephone: (418) 656-2481. Fax: (418) 656- CM . For each simulation, the series was composed of 13

7916. E-mail: michel.pezolet@chm.ulaval.ca. spectra.

10.1021/jp027795b CCC: $25.00 © 2003 American Chemical Society
Published on Web 07/24/2003




Relation between Intensity Variations and Synchronism J. Phys. Chem. A, Vol. 107, No. 33, 2008367

Two-Dimensional Correlation Analysis. The synchronous
(@) and asynchronous¥{) matrixes were calculated and the
corresponding maps plotted with a homemade program written
with the Mathlab 5.3 software for Windows (MathSoft Inc.,
Cambridge, MA). The calculation was carried out in the matrix
form!® using the Hilbert transforrif

Y

Absorbancex102 (arbitrary unit)

2_
=1 _MMT and W=—2_MHM) T
N—1 N—1 1150 1100 1050 1000 950 900 850
Wavenumber (cm-")
whereN is the number of spectra of the seribb,is the matrix Figure 1. Simulated absorbance spectra corresponding to a two-state
of the spectra of the series (spectra are put in colunig)its model. One band is locatedwit= 950 cn* and decreases in intensity

transposed matrix. and is the Hilber=Noda matrix whose as a function of the external variableThe second band, located at
elemgntsH ~0 i;‘ m = n andHp = 1/(n — m) otherwise U2 = 1050 cn1?, increases in intensity. The two bands are synchronous
mn — - mn — - .

, n NEM _with yi; = 0.1,y, = 0, dys= 0.075, anddy> = dyy/1.5 = 0.05.
A filter was used to eliminate very small correlation intensi-

ties. It sets to zero the elemends,, of ® and the elements 1.0 i
Wrn of W that obey the conditions /V
0.5 F{
th(o.t

@, | < (@, — ®,)/100 (1+th(o.1)/2 / th(o.t)
and

Wi = (Winax = Wiin)/100 “External variable t (arbitrary unit)
respectively. Figure 2. Plot of the function th§t) (eq 3) and the function

(1+ th(at))/2 in eq 4 fort € [—6,+6] (step of unity) ancx = 0.5.

Results and Discussion representation of phenomena such as phase transitions or titration
I. Impact of the Reference.To demonstrate the impact of  curves, etc., and its expression is given by

the reference spectrum on 2D-COS, a simple two-state model

is first presented. Consider two bands, centered at wavenumbers exp(t) — exp—at)

71 and s, that are associated to two species A and B such that th(at) =

exp@t) + exp(—at) 3

A=B @ where the constant is the slope of the curve at the origin.

This equilibium depends on a variabtethat represents an Hence, it characterizes the speed (or the rate) of the intensity

external perturbation that is applied to the system under Study_variatiqns. The intensity variation.s‘altandq‘/z are characterizgd
The two bands at; andv; evolve as a result of this perturbation by their spe_edxl qnd az, respectively. Due to the conversion
and are represented by their intensitig&) and ys(t). The of _the species A |_nt_o B for a two-state model (or reciprocally
potential presence of band shifts and changes in bandwidth jsB Into fA)’ t.he. varlatlonbs ry:just b els_ynch(;c_)nous. T_herefor_e, the
neglected here. Before the perturbation is applied, the initial YP€ Of variation must be identical af and; (gl(t)_: Ge(t) =
intensitiesy,’ andy, are constant and have different values. 9(1), @nd the variation rates must be equal = o, = o). The
For example, for infrared absorption spectyd,andy, may amp'lltudeséyl andéyg can be a priori different. For example,
have different values because the absorption coefficients of thefor infrared absorption spectrady, = dy. because each
vibrations atv; and 7, are different and because the initial @Psorption coefficient at, andv. is specific to the correspond-
concentrations of the two species are different. When the ing vibration mode. Hencey(t) andy,(t) can be written
perturbation is applied, the intensities change as a function of

t, with t [—T/2,T/2], whereT is the total time of the experiment. i _ i s, 1t+th(ad)
The intensities are described by two functianét) and g(t) Ya) =yr = oyi0(0) = y1 ~ 0y, 2 @)
that represent the time-dependent response of the system at o o 1+ th(at)
and 7, and by the amplitudes of the intensity variatiodg Y0) =Yz + 0y 900 =y, + 0y, ———

anddy,. The intensities can then be written as

i The functiong(t) = (1 + th(at))/2 has been more specifically
Yi® = Y1 + 0y,0:(t) @) chosen because it varies between 0 and 1, whereas the function
Yo(t) =Y, + OY,0,(t) th(at) varies between-1 and+1, as seen in Figure 2. Thus,
yi — Oy < yi(t) < yif andys' < yo(t) < yo' + dy». The opposite
Figure 1 shows the simulated spectra of two bands repre-Sign in the expressions gi(t) andy-(t) in eq 4 stems from the
sentative of a two-state model. In this example, the species A fact that one band decreases while the other increases for a two-
is characterized by a band located at 950 &and the species  state model. A potential delay, notgd can be introduced by
B by a band at 1050 cmd. The concentration of A is initially using a translation of the intensity variation along thaxis
100% of the total and that of B is zero. During the simulated (replacingt by t — ). Of course, for a two state model, the
experiment, 75% of A is converted into B. To describe the values off5 must be equal fory(t) and yo(t). Therefore, by
intensity variations, a hyperbolic tangent function has been definition, two synchronous (in-phase) bands must follow the
chosen as illustrated in Figure 2. This function is a good same type of variation (the same function), have the same speed
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Figure 3. Asynchronous map¥ generated by the spectra of Figure 1. The maps were obtained for different references: (a) no reference; (b) first
spectrum; (c) mean spectrum. The simulated dynamic spectra are shown in the outer frames. The minimum and maximum values of the correlation
intensities are indicated at the bottom of the maps.
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Figure 4. Intensitiesyi(t) and¥(t) as a function of the external variaki¢above) and intensityi(t) as a function ofyx(t) (below), corresponding
to the simulated spectra of Figure 1 and calculated for different references: (a) no reference; (b) first spectrum; (c) mean spectrum.

(the same value ak), and be characterized by the same delay This time, notedes in the following, corresponds to the time

(the same value 0off). In Figure 1,a is 0.5, is 0, and of the chosen reference and is defined by
t € [—6,16] in arbitrary time units.
Figure 3 presents the asynchronous maps generated by the Vit = Vo(te) =0 (5)

spectra of Figure 1 and calculated with different references (i.e.,
with different dynamic spectra). The usual references suggestedThen, yi'®f = yi(te) and y."®f = y(ter) are the reference
by Nodd are used, i.e., the first spectrum, the mean (average) intensities of the reference spectrum corresponding to the time
spectrum, and no reference. Without reference, the asynchronousr. In the time domain [-6;+6] of this two-state model,es is
map exhibits a peak at 950/1050 cthindicating that the band ~ —6 if the first spectrum is the reference (Figure 4b) and 0 if
at 950 cnt! is delayed or varies at a different rate than that at the mean spectrum is chosen (Figure 4c). In its lower part,
1050 cn1,12 although the spectral variations are synchronous Figure 4 shows the plots §i(t) as a function offx(t). It can be
as defined above. When the mean spectrum or the first spectrurseen that, as a result of the offset, the relation betvigéh
is used as a reference, the maps only exhibit noise, which isand¥;(t) is a straight line that is linear (that passes through the
characteristic of two bands that are in-phase. Thus, different origin of the axis), i.e.,
results are obtained depending on the reference.

Figure 4, in its upper part, presents the dynamic intensities ¥a(t) = c¥i(t) (6)
$1(t) and¥o(t) of the two bands shown in Figure 1 as a function
of t, obtained after subtraction of different references. Without wherec is a constant with respect toTherefore, the dynamic
referencey;(t) = ya(t) and¥,(t) = yo(t). The use of a reference  intensities at; andv; increase in a proportional manner; i.e.,
only results in an offset of the intensity variations, the two the intensity ratio of the two synchronous bands is constant
dynamic intensities a; andv, being zero at the same time. throughout the experiment if a reference is used. The cor-
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respondence between synchronicity and the linear relationshipof synchronicities, even though the correlation intensities of the
between the intensity variations has been emphasized very2D maps do depend on the amplitudes of the intensity variations
recently®® Without a reference, the straight line is affine (does of the dynamic spectra.

not passes through the origin), i.e., The above mathematical results have been obtained consider-
5 . ) ing two intensities located at fixed wavenumbers. Of course,

Y1) = c%(t) +d, withd=0 (7 the results can be extended to two wavenumber domains that
. . o ) represent the (more realistic) absorption of two vibration modes

and the intensity ratio is not constant with respect.to (see Figure 3). As long as the bands do not experience

These conclusions can be easily demonstrated mathematicallyy,ayenumber shift of change in bandwidth, the 2D correlations
If the first spectrum is the reference, the dynamic intensities patween intensities at any wavenumber of the first band and

are intensities at any wavenumber of the second band will follow
_ 1+ th(at) the same rules given above.
V) =y, ) —y,' = — 6le Il. General Case: Criterion for Two Intensity Variations
1+ th(at) (8) To Be Synchronous (In-phasg)Equgtions .6 gnd 7 have been
90 = yo(t) =y, = 5sz deduced from synchronous intensity variations that follow a

hyperbolic tangent function, but are these equations valid for
any synchronous variations? Consider two dynamic intensities

Therefore, the intensity ratio of the dynamic intensities as a at 7, ando, whose intensity ratio is constant for anguch as

function oft is

~ f
ACEY; oy, 9 r= yl_(t) - y—l(t) — =c (13)
Ir = = = — — — - -
o) oY © 50 v -y,
which is identical to eq 6. Then, the intensity ratiof the two where ¢ is a constant andy™ and y,*" are the reference

bands is constant for antyand is given by the ratio of the intensities atv; and v, of the reference spectrum. From the

amplitudes of the intensity variations. The negative sign only Fourier transform formalism of 2D-COS, the eleme®($1,7>)

reflects that the two bands change in opposite directions. andW(v1,07) of the synchronous magp and asynchronous map
Fort e [-T/2,+T/2], the mean value of thg) is zero because W can be written as follows:

this function is odd. Then, the mean (average) intensjtiesd

y2 are D0y, 1) = = [V (0)0) + 9,"(0)%,"(@)] do
_ 1 2 . oy, (14)
=2 [Ty de =y, - = e
1 Loy, (10) W(03,0,) = 1fo (@)Y, ) = ¥, (@)%, "(@)] do
yz = 'I_' —T/2 yZ(t) dt = y2 + 7 (15)

whereYR{w) and¥™(w) (j = 1 or 2) are the real and imaginary

If the reference is the mean spectrum, the dynamic intensities ) = )
P y parts of the Fourier transforntj(w) of y;(t), respectively. If

are given by §1(t) = c¥(t), the Fourier transforms are related by
. oy. - -
V) =yyt) =y, = — Tlth(at) ¥,(0) = cYy() (16)
11)
oY, ( i
Y () — g =22 Therefore, for two complex numbers that are proportional, we
o) = Yo(t) — V> 2 th(at) have
and their ratios also follow eq 9. One can notice that the dynamic S Rep \ _ U Re
; g X . . Y, (@) =cY, (w)
intensities plotted in parts b and c of Figure 4 as a function of < m “m a7
t are well represented by egs 8 and 11, respectively. In the Yy (@) =cY, (w)
example shown in Figure Hy; = 0.075 anddy, = 0.05, so )
thatr should be equal te-1.5, which is actually observed in ~ From eqs 14, 15, and 17, we obtain
Figure 4b,c. C oo
If no reference is used, the intensity ratio is D(v,,0,) = - fo |Y2(a))|2 dw (18)

OOy oyl )=
%00 (0 v, + oy,[1 + th(at)])/2

n—CT Jo 1" (@)Y, (w) — ¥, (@0) Y, (@)] dw =0 (19)

and it can be demonstrated that the relation betvjgéhand

§(t) follows eq 7. Theny is not constant with respect t@ven It is demonstrated that when the ratio of two intensities is
if a; = op. Therefore, the constancy of(i.e., the linearity constant for any (i.e., if eq 13 is satisfied), the asynchronous
between¥y,(t) and ¥(t)) is a criterion for two bands to be correlation is zero and the two intensity variations are synchro-
synchronous. Using a nonzero reference, the synchronicity nous. A similar demonstration can be done using the Hitbert
between two bands is revealed even if the magnitude of their Noda formalism.

intensity changes is different of if their initial intensities are lll. General Case: General Functions That Satisfy the
different. The choice of the reference is thus very important to Criterion of Synchronicity. The above two-state model, for
detect synchronicities in 2D-COS. However, the normalization which a hyperbolic function thi(t) represents the intensity
of the intensity is unimportant to demonstrate the occurrence variations, is a particular case that illustrates the synchronism
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between two bands. One can wonder what the forms of the
dynamic intensities are that satisfy the condition given in
eq 13. Consider the intensity(t) (for j = 1 or 2) at the
wavenumber; such that

y(t) = Ag(ay.t) + B,

for t € [0,T] (but identical results can be obtained for t ranging
between two arbitrary value$, and T,). A and Bj are two
constants with respect tothat depend on the studied system
and ony;. The functiong(ay,t) is arbitrary and is characterized
by a single parametey; which is related to the speed (the rate)
of the intensity variation and which is a constant with respect
tot. The values ofy; anda, can be a priori different. A potential
delay can be added t(t) or yo(t) by replacingt by t — ;,
where f; is constant and characterizes the bandain the
following, 1 andp; are set to zero. Examplesgfio,t) functions
are th@ut), expat), In(at), sin(at), polynomials, etc. Some
boundary conditions can be imposed w(t) and we notedy;
the amplitude of the intensity variations such as

(20)

y(0) =y,
ym=y (21)
oY=y -y

Given a andb are the boundary values gfo;,t) and dg the
difference betweeb anda
g(oy, t=0)=a
ooy, t=T)=b
dg=b-—a

(22)

the boundary conditions (21) become
YO)=y =Aa+B
Y(M =y =Ab+8,
oy =y —y =Ab-2)

(23)

This leads to another form for eq 20:
1 .
%O = 55o%eles D - (ay" — by)]

_ %, | 04
= 5—g[g(aj f) —alty, (24)

A representative scheme of the general functiém,t) and
the intensitieg)(t) of two bands located at different wavenum-
bers are given in Figure 5. For two bands that have different
variation amplitudes and different initial and final intensities,
g(o,t) represents a common function that describes their
(synchronous) intensity variation. It can also be viewed as the
representation of the external perturbation. Indeed, for small
amplitudes of the perturbation, the response of the system will
be, in a first approximation, of the same type as the perturbation,
i.e., will follow the same function. Thus, the intensity variations
of the bands will be of the same type, with potential delgys

Lefevre and Peolet

Figure 5. Symbolic representation of (a) the general functiga,t)

that can describe intensity variations and (b) two synchronous intensity
variations y,(t) and y»(t) that follow this general function. The
amplitudes and the initial and final values of the intensities are also
represented.

If no reference is used, the intensity ratio of the dynamic
intensities represented by eq 24 is not constant with respect to
t even ifa; = op andB; = B2. This is also true even i) =
yal, if yof = yif, or if dy; = dy». It can be demonstrated that the
relation betweery;(t) andy(t) can be rearranged in the form
given by eq 7. Consequently, the two intensity variations will
generate 2D asynchronous peaks even if the bands are actually
synchronous.

If the first spectrum is chosen as the reference, the dynamic
intensities are given by

) oV
%m=mm—m:%M%n—a (25)

Then, the ratio of the dynamic intensities is given by

oy
Z&Q;ngn—m;M

o) O

y if i, =, (26)
gém%n—a

2

which satisfies eq 13.
The mean intensities are given by

oy, .
5= 2700 = e T oty ) - @ - bY)

oyir1 ot -
= 6—5[? [ g(ayt) ot — a] +y, 27)
If the mean spectrum is chosen as a reference, the dynamic
intensities are given by

50 =30 -y =Jole - 1 oo ] @8)

Again, it can be seen that the expressions between the brackets
are equal to each other for the intensitie®atndv, if o; =
o and if there is no delay between the variations. The natio
is again equal to the ratio of the amplitudes. Thus, using a
nonzero reference leads to the expected absence of asynchro-

with respect to the perturbation. Each parameter that describediSms inW for sync’:)hronous bands. But, is it the case for any
the bands depends on the applied perturbation, on the systenflonzero reference®

under study, and on the wavenumber. Therefgiief, and

oy; depend on the perturbation and on the intrinsic properties
of the system. This is reflected by eq 23 where a and b
characterize the perturbation, wheréq®;) andB;(v;) charac-
terize the system at the wavenumigr

Given y;’ the intensity at wavenumber; of a spectrum
situated between the first and the last spectrum of the series
such that

y/ =yt=yT), witho<y=1 (29)
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If this spectrum is used as a reference, it is found that stronger ones if no reference is used. Using a reference spectrum,
5 the initial subtraction diminishes the band intensities, highlight-
o %Y _ ing the small intensity variations.
O =0 -y = 5—g[g(aj,t) — 9ot =Nl (30) IV. Special Case: Linear Variations. The relationships
between intensity variations of two synchronous bands repre-
It can be seen that eq 25 is a particular case of eq 30 whensented by arbitrary functions have been seen above. A special
y = 0 (initial spectrum). From eq 30,satisfies eq 13 ity = case that should deserve consideration is linear intensity
a2 and is equal to the ratio of the variation amplitudes. variation. Suppose that the intensity variations are linear and
Therefore, as soon as any spectrum of the series is used as gatisfy eq 21. The intensity can be written as
reference, two synchronous bands will not generate asynchro-
nous peaks. It can be noticed that the two dynamic intensities 6yj i
¥1(t) anda(t) both follow eq 5 fortes = ¥ T (which corresponds Y =—=t+y, (31)
to the time of the chosen referengé).
The fact that the choice of the reference may be arbitrary Tpe coefficientoy)/T is the slope of the straight line. It also
has been previously mentionédt is demonstrated here that it represents the speeg of the intensity variations with
should not be zero and that it may be any spectrum of the series
or the mean spectrum. With such references, the results of 2D- Sy,
COS will be qualitatively equivalent (2D asynchronous peaks == (32)
located at the same positions with the same signs), but the 2D

correlation intensity values may be different depending on the As a conseguence. the speed and the amplitude of the intensit
chosen reference. Without reference, the correlations will be © ™~ = ° quence, P o P . y
variations are directly related, which is not the case in general.

asynchronous, although the two bands can be actually synchro- When the first spectrum is chosen as the reference, the

nous. It has to be noted that correct results will be obtained if I " X .
dynamic intensities are given by (the same demonstrations can

any spectrum of the series or if the mean spectrum is the be made and the same conclusions are reached for other
reference but, of course, the reference cannot be Completelyreferences)

arbitrary. First of all, the reference should have a physical
meaning. Second, the convenient references (i.e., those that will Sv
provide correct results for synchronous bands) must be restricted Gt =y () -y, = %% (33)
i i iTT
to those that obey eq 13.
The functiong(a,t) can be monotonic or nonmonotonic. As

long as the two variations follow the same functigf.,t), they and then

will be in-phase if a spectrum is used as a reference; i .

ap, and if 51 = B,. This has been confirmed, for example, with = yl_(t) _ 5_3/1 _ % (34)
simulations for which the intensity variations follow a sinusoidal %) Oy, o,

or a polynomial function of degree 3 sucha@s — t (data not

shown). But, as pointed out byaS¢ and colleagues, the  Thys the above general rule is also valid for linear variations;
interpretation of synchronous maps generated by nonmonotonicj e  for two synchronous bands, the ratio of their dynamic
intensity variations may be complékHowever, most of the jntensity is constant and equal to the ratio of the variation
conclusions drawn from the synchronous map can be directly gmplitudes when a convenient nonzero reference is used. But
obtained from a conventional analysis of the dynamic spectra. j, this case, the variation rates and a, do not have to be
Such an analysis is highly recommended before any 2D-COSjgentical, because the amplitude and the rate are not independent.
investigation, especially for nonmonotonic variations. A difference in variation amplitude is the same as a difference
The above mathematical considerations can be extended top, yariation rate. The ratio is then also equal to the intensity
noncontinuous functions (discrete series of spectra), which is yatig of the rate of changes. Therefore, for two bands that linearly
the practical case. The conclusion is the same; i.e., for two qry in intensity, their correlations will always be found as
bands, the intensity variations will be experimentally synchro-  gynchronous as long as a convenient spectrum reference is used.

nous using 2D-COS_if the intensity ratio is c_onstant throughout This has been verified with spectral simulations (data not
the experiment and if a nonzero reference is used. It has to beghown).

stressed that the conclusions relative to the choice of the /. Application to Absorption Spectra. The above math-
reference and to the type of intensity variation that have been gmatical considerations can be applied to spectroscopic signals
drawn from this mathematical analysis have all been confirmed represented by their intensiyyt). As a particular case, we now

by spectral simulations as described in the Experimental Section.onsider absorption spectra that follow the Belsambert’s law.

It has to be noted that the problem of the reference also occursgppose that under static conditions:(0) the absorbanciy(t)
for asynchronous bands (results not presented). It can be showry; wavenumbers; is given by

that the sign of the cross-peaks in the synchronous and
asynchronous maps can be incorrect if no reference is used. In A — Al — 0.0
fact, it appears that the sign of the 2D peaks depends on the Alt=0)=A;=¢7 (35)

direction of the band intensity variations. This clearly can lead i o
Y y where the constants® andc® are the initial molar absorptivity

to misinterpretation of the data. The problem does not arise with - . . .
a reference, which emphasizes the importance of the reference‘."md initial concentration, respectively (we assume that the optical

As mentioned in the Introduction, additional 2D peak may path Iengt_h of the sample is constant and equal to unity during
be observed by using a nonzero reference spectrum. This stem%hiexfi”g]etﬂt)' bsorb (t b it
from the fact that the correlation intensities in 2D-COS depends "' . the absorbancaj(t) can be written
on both the degree of correlation and the band intensity. 0 0 s
Therefore, 2D peaks due to weak bands can be masked by A =¢¢ +&MEWO) (36)
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The functionsgj(t) andgj(t) are the time-dependent responses 1 above), the slopes of the straight lines are different and the
at wavenumbergj; of the molar absorption coefficient and  spectral changes cannot be ascribed to a different amplitude of
concentration, respectively. They represent the dynamic part of concentration changes or to a different rate of the variations.

the spectra. One needs additional data, i.e., the final concentrations of the
Two cases can be encountered: two species. If the initial and final concentrations are equal,
1. The changes in absorbance are associatedatdations and if an asynchronous peak is observed, it can be assessed

in concentration of the specieg(f) = ). that the two bands are asynchronous. However, even if the

This corresponds, for example, to a dilution or to any two- magnitudes of the concentration changes of the two species are
state systems including isomerization, phase transitions, etc. Innonequal, it cannot be excluded that the rate of the concentration
this case, changes are also different. The same argument can be used if

the spectral changes are due to variations of the absorption
A = ¢°1c’ + &[] = ¢°[c° + og(Dg(oy.)]  (37) coefficient (case 2 above).
Conclusion

In conclusion, the results shown above demonstrate that it is
highly recommended to use a nonzero reference for 2D-COS
analysis. Otherwise, peak artifacts in the asynchronous maps
can be obtained for synchronous intensity variations. The
; > reference can be any spectrum of the series or the mean
above conclusions drawn foy(t) can be applied toA(t). spectrum. It could also be demonstrated (data not shown) that,
Therefore, for two bands that vary as a consequence ofithout a reference, error in the signs of the synchronous as
concentration changes only, the existence of in-phase variations, || a5 asynchronous peaks can arise for nonsynchronous bands,
will be detected by a nonzero reference spectrum. For a two-\yhereas the signs are correct if the reference is one of the above
state model such as that described abades,= —dc, = oc spectra. Therefore, not only is the reference spectrum crucial
andoy = az = o. Thus eq 37 becomes fpr= 1 andj = 2: for synchronous bands as shown in the present analysis, but it

o o o is so for any band variation. Moreover, even using a nonzero

A(t) = ercy — e ocg(a) (38) reference, the application of a linear perturbation in view of

A(t) = €,°c,° + €, dcg(at) 2D-COS analysis should be avoided at least for small ampli-
tudes, because the response of the system may also be linear.

It can be seen that the amplitudes of the intensity variations AS a consequence, the determination of synchronisms and
dy1 = €1°0c anddy, = e°0c are different as a result of different ~ asynchronisms may be very complex. Even for large-amplitude
values of the absorption coefficients. Thus, a nonzero referencevariations of the perturbation, one should verify that the
has to be used to reveal the synchronism of the two bands. responses of the bands are not linear as a function of the external

2. The changes in absorbance are associated to changes invariable. The conclusions reached in this study for generalized
the molar absorptiity (&(t) = ¢°). 2D-COS are valid for the different forms of hybrid 2D-CBS

This can arise if the absorption coefficient directly depends and for the global phase angle description of 2D-CGS well.
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wheredc; is the amplitude of the concentration changes of the
species that absorb at

With respect to eq 24, eq 37 correspondsite 0 andb =
1. Thus,A(t) is exactly represented by the intensyft) that
has been discussed above #jd) can be treated similarly. The



